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Abstract. We consider a fully frustrated Ising model on a square lattice, depending on 
four parameters. The partition function is shown to be equivalent to the two-parameter 
(ferromagnetic) Onsager partition function. This result generalises a relation established 
by Southern ef al, and can be checked in the particular case of the (one-parameter) Villain 
model. In particular, the residual entropy of the Villain model is linked to the free energy 
of the Onsager model at criticality. The reduction from four to two parameters, occurring 
in this mapping, is studied in the ligh’ of the inverse relation satisfied by the partition 
function of the frustrated model. 

1. Introduction 

It is generally believed that frustration and disorder are responsible for the unusual 
properties of spin glasses (Fischer 1982, Toulouse 1982). In order to disentangle these 
two effects, periodic frustrated models have been studied. Various questions arise 
such as: 

(i) the existence of a phase transition and the nature of the low-temperature phase 
(Wannier 1950, Villain 1977, Derrida et a1 1978, AndrC et af 1979, Williams 1982); 

(ii) the behaviour of correlation functions (Stephenson 1970, Gabay 1980, Forgacs 
1981); 

(iii) the possible influence of the frustration network periodicity (Bryskin et a1 
1980, Longa and Olks 1980). 

In this work, we will follow a path suggested first by Jungling (1975) and then by 
Southern et a1 (1980), who were able to map the isotropic fully frustrated king model 
on a square lattice (Villain model) onto a symmetric eight-vertex model (Baxter 1972). 
Here, we generalise this result to a fully frustrated model depending on four coupling 
constants. The partition function of this enlarged model, which can be mapped onto 
a free-fermion case of the Baxter model, is shown to be equivalent to the partition 
function of an anisotropic ferromagnetic model (Onsager 1944). At this particular 
level, we are, therefore, able to ‘defrustrate’ the model((. One should note, however, 
that the temperature interval (0,oo) of the fully frustrated case corresponds to the 
interval (Tc, CO) of the ferromagnetic case. From a physical point of view, it is interesting 
to see the precise correspondence between the low-temperature properties of the fully 

f Laboratoire associe au CNRS. 
1 1  This mapping does not a priori hold for more sophisticated objects, such as correlation functions (Gabay 
‘1980). 
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frustrated model (ground-state entropy, etc) and some (finite) critical quantities of the 
Onsager model. From a more mathematical point of view (Jaekel and Maillard 
1982a, b), the problem is to know whether the partition function of a given model 
can be completely determined by 

(i) a functional equation, called the inverse relation (Stroganov 1979); 
(ii) the geometrical symmetries of the model. 

This question can be studied in the light of the reduction of the number of parameters 
in the ‘defrustration’ mapping (two in the Onsager case, four in the frustrated model). 
Such a reduction is certainly a non-trivial property; a similar phenomenon occurs in 
other contexts (Baxter and Enting 1978). We will see that the four-parameter 
frustrated model satisfies an inverse relation; this fact will be used to try to find the 
partition function. 

The paper is organised as follows: the model is defined in 0 2, where we show its 
relation to a constrained Baxter model and to the Onsager ferromagnetic solution. 
Section 3 deals with some particular examples (Villain model). The inverse relation 
using a diagrammatic expansion is presented in 0 4. Finally, some comments are given 
on the link between frustrated and non-frustrated models. 

2. The model and its relation to ferromagnetic models 

2.1. Mapping onto a Baxter model 

The model is defined in figure 1, and its reduced Hamiltonian reads 

-&P = -H/keT = 1 {K}ijpipj, 
(ii) 

In equation ( l ) ,  ( i j )  denotes nearest-neighbour pairing, pi = i l ,  and the reduced 
coupling constants {K} i i  may take the values K1, *K2, K3, *K4 (see figure 1). The 
isotropic case (K1 = K2 = K3 = K4) corresponds to Villain’s model and has been con- 
sidered by Southern et a1 (1980). Related problems with two or three coupling 
constants have been considered by AndrC et a1 (1979) and Villain et a f  (1980). If N 
is the number of sites, the partition function per site is given in the thermodynamic 
limit by 

Figure 1. The four-parameter fully frustrated model. Double lines denote negative 
coupling constants (-K2 or -K4). Circled spins are to be integrated out. 
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In order to calculate (2), it is convenient to integrate out the circled spins of figure 
1. Two non-equivalent kinds of site occur (figure 2 ) .  Let us denote their spins by U 
(figure 2 ( a ) )  and T (figure 2(b) ) .  It is shown in the appendix that the partial trace 
over spins IT generates nearest-neighbour interactions {K12, K23, K34, &I}, next- 
nearest-neighbour interactions (Kl3, Kz4} and a four-spin interaction (K1234). The 
same operation on spins T yields the same types of interaction, except that one gets 
{-KIz, -KZ3, -K34, -K41} as nearest-neighbour couplings. As a consequence, the 
partition function does not depend on these terms. We therefore obtain an Ising 
representation (KI3, Kz4, K1234} of the Baxter model (Kadanoff and Wegner 1971). 

io) I b )  

Figure 2. Two kinds of site: ( a )  sum over spin U, surrounded by four ferromagnetic bonds 
and (b)  sum over spin 7, surrounded by two ferro- and two antiferromagnetic bonds. The 
results are the same as ( a )  except that ( K l z ,  K2,, K34, K41) change sign. 

If one sets exp K13 = A ,  exp K24 = B, exp K1234 = C, the vertex parameters (a, 6,  c,  d )  
of the Baxter model are then defined as 

a=AABC 

b = A  CIAB 

c = AA/BC 

d = AB/AC 

where A is a multiplicative constant which does not enter critical properties (Kadanoff 
and Wegner 1971). Using the appendix, one can express (a, b, c ,  d )  as functions of 
the original parameters (KI,  Kz, K3, K4): 

a = C O S ~ ( K ~  +K2 +K3 +K4) cosh(K1 -KZ +K3 -K4) 

b 2  = cosh(Ki+ Kz - K3 - K4) cosh(Ki -KZ - K3 + K4) 

c 2  = cosh(K1 -Kz + K3 +K4) cosh(l(1 +Kz +K3-K4) 

d Z  = cosh(-K1+ K Z  +K3 +K4) cosh(K.1 +K2 -K3 +K4). 

(4a ) 

(4b 1 
(4c ) 

(4d ) 

Equations ( 4 )  in turn show that this Baxter model obeys the free-fermion condition 
(Fan and Wu 1970) 

a z + b 2  = c 2  + d 2 .  ( 5 )  
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2.2. Mapping onto a ferromagnetic Ising model 

If Z ( a ,  6, c, d )  is the partition function of the Baxter model, one can show that (Baxter 
1978): 

(i) there is a duality operation D (see equation (3.7) of Baxter (1978)) 
D 

(a, 6, c, d )  - (a* ,  b*, c * ,  d * )  

such that Z ( a ,  6 ,  c, d )  = Z ( a * ,  b*, c*,  d * )  and 

(ii) there exists an involution I 
I 

(a, 6 ,  c, d 1 - (a, b, c, -4 

such that Z(a ,  6, c, d )  = Z ( a ,  b, c, -d) .  
Combining both operations, it is easy to show that 

(a, b, c,  d )  - (a ' ,  b' ,  c ' ,  d ' )  
D J I F  

( 6 )  

implies Z(a ,  6, c, d )  = Z ( a ' ,  b ' ,  c ' ,  d ) .  Equations ( 6 )  explicitly read 

2 a ' = a - b + c + d  

2b'= -a + b  +c  + d  

2 c ' = a + b i c - d  

2d '=  a + b  - c  + d .  

The free-fermion condition (equation ( 5 ) )  now reads 

(8) 

which shows that this Baxter model is a ferromagnetic Ising model (Fan and Wu 
(1970). Following the Kadanoff-Wegner (1971) correspondence, one finds that 
(a'b'c ' ,  d ' )  can be mapped onto a set ( A ' ,  A' ,  B', C'= 1 )  with 

a'b '= c'd' 

(9a 1 
b ' =  A'IA'B' ( 9 b )  

c ' =  A'A'/B' (9c ) 

d ' = h ' B ' / A ' .  ( 9 4  
Setting A' = exp(Ki3 ) and B' = exp(Ki4 ), we finally get the (anisotropic) coupling 
constants of the Ising case: 

a = A 'A  'B' 

a' a - b + c + d  
d '  a + b - c + d  

exp(2Ki3 ) = - = 

a '  a - b + c + d  
c a + b + c - d '  

exp(2Kh4 ) = 7 = 

Equations (10)  can be checked easily in one-dimensional limiting cases (one of 
the four Ki going to zero or infinity). 
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Let us summarise this section, The original frustrated model described by (K1, 
K2, K3, K4) has been mapped onto a Baxter model (a ,  6,  c,  d )  constrained by the 
free-fermion condition. This model can in turn be mapped onto an anisotropic king 
model (Ki3, K;4). The relation between these models is contained in equations ( 4 )  
and (10). 

2.3. Some properties of the model 

2.3.1. Isotropy. In order to get an isotropic Ising model, one must have 

that is 
K;3 =K;4 

c = d .  

(or c‘ = d ’ ) ,  

Using equations ( 4 c )  and ( 4 d ) ,  the isotropy condition can be rewritten as 

sinh 2K1 sinh 2K3 = sinh 2K2 sinh 2K4. 

This condition is obviously satisfied in the Villain model (Ki = K). 
(11) 

2.3.2. Correspondence between temperatures. It is easy to check that the relation 
between temperatures in the frustrated and ferromagnetic cases is monotonic, at least 
for the Villain model (Ki = K)  and the model (K1 = KJ,  K2 = K4). In the general case, 
we just point out that T,  of the Onsager model corresponds to T = 0 of the frustrated 
model. Starting from the critical condition (McCoy and Wu 1973) 

(12) sinh 2Ki3 sinh 2K;4 = 1 

we have, since a’b’ = c’d’ ,  

sinh 2Ki3  = ;($-$) 
Using equations (7), one sees that (12) implies 

ab/cd = CO, 

that is, T = 0 in the frustrated model (equations ( 4 ) ) .  

3. Application to the Villain model 

Let us consider the Villain (1977) model where Ki  = K, as an example. Some of the 
results have been obtained by Southern et a1 (1980). Equations ( 4 a ) - ( 4 d )  read 

a ’=  cosh 4 K  b 2 =  1 c 2  = d 2  = cosh2 2K. 

The correspondence with the (isotropic) Ising model, Ki3 = Ki4 = K’, is given by (10): 

2 ~ 0 s h  2K - 1 +(cosh 4 K ) 1 ’ 2  
l+(cosh 4K)’” exp(2K’) = 

One easily checks that (K + CO) implies (exp(2K’) = 1 +&) and, more generally, that 
equation (13) and the Onsager module (McCoy and Wu 1973) 

(15) ko  = 2 sinh 2K‘/cosh2 2K‘  
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yield the correct Villain (1977) module 

k o  = k v  = tanh2 2K. 

In short, we have 
1 a - b + 2 c  2 c + b - a  
2 a + b  a + b  

sinh 2 K ’ = - (  - 

that is 
a ’ - b 2  
a + b 2  

k o = r  

with equation (16) as a result. This shows that the angular integrals (McCoy and Wu 
1973) of the two partition functions are the same for any temperature. This allows 
us to link the residual entropy Sv of the Villain model with the Onsager free energy 
at criticality Fc: 

Sv = f ( -pcFc-  f in 2 )  = G / T  

where G is Catalan’s constant (Fisher 1961, Kasteleyn 1963) and pc = Ti1,  

4. Study of the inverse functional relation 

The notion of an inverse relation, leading to a functional equation on the partition 
function of some lattice models, was first introduced in statistical mechanics by 
Stroganov (1979), and intensively used by many authors, among them Baxter (1980, 
1982). It has been noticed by one of us that many models satisfy an inverse relation 
(Jaekel and Maillard 1983). Within the scope of this paper, the inverse functional 
relation can be written as 

Z ( K 1 ,  K2 ,  K 3 ,  K 4 ) Z ( K 1  + f i r ,  -Kz ,  K 3  +$.rr, -K4)  = ((2i sinh 2K1)(2i sinh 2K2))1’2 
(17) 

where 2 is defined in equation ( 2 ) .  Of course, Z ( K 1 ,  K z ,  K 3 ,  K4) is symmetric under 
the symmetry group of the square (C4,,). 

Let us first recall Baxter’s result on the two-dimensional anisotropic ferromagnetic 
Ising model (Baxter 1980); the partition function of this model can be completely 
determined by using 

( i )  the inverse relation on the partition function and the symmetry between the 
two coupling constants of this model, say KO and Kb, and 

(ii) a resummed high-temperature expansion (see e.g. Jaekel and Maillard 1982b), 
and the fact that in this expansion tanh’ K O  = 1 is the only singularity. 

It is rather tempting to see whether Z ( K 1 ,  K z ,  K 3 ,  K 4 )  can be similarly determined, 
by using the inverse relation (equation (17)) and the geometrical symmetry (C4,,). 
Let us introduce the following notations: 

t l  = tanh K 1 ,  f 2  = tanh K 2 ,  t3  = tanh K 3 ,  t4 = tanh K4.  

At the lowest order in t 2  and f4,  we have the following diagram (see Jaekel and 
Maillard 1982b for further details) 
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At this order, the (resummed) high-temperature expansion of Z ( K 1 ,  KZ, KJ, K4) 
clearly satisfies the inverse relation (17). At the next order, let us consider the 
coefficient of t : t i .  The highest-order singularities occur in the diagram 

I I 

One can convince oneself that the full t:t: coefficient can be written in the form 

(19) 

Due to the C4v symmetry, coefficient a can be derived from the above mentioned 
coefficient (18). From the inverse relation (17), coefficientsf, a + e ,  b + d ,  c are known. 
Therefore, to determine completely the t:t: coefficient, some extra information is 
needed (for instance the t:t:t:t: coefficient). At higher orders, it will be necessary 
to add more and more extra information to determine the partition function. These 
difficulties: are clearly due to the great number of parameters (four in the (K1, K2, 
K3, K4) model). (It should be noticed that in the restricted model (K, = K 3 ,  K 2  = K 4 ) ,  
the partition function satisfies exactly the same inverse and symmetry relations as in 
the (anisotropic) Onsager model. The only singularities which occur, seem to be 
tanh’ Kl = *l .  It may well be that these inverse and symmetry relations determine 
the partition function as in the Onsager case.) 

As a matter of fict, 8 2 sheds some light on the extra information needed; the 
four-parameter frustrated model was shown to be equivalent to the two-parameter 
(ferromagnetic) Ising model, for which the inverse and symmetry relations determine 
completely the partition function (Baxter 1980). Therefore the inverse relation and 
the geometrical symmetry CdV, when combined with the equivalence developed in 5 2, 
determine completely the partition function of the frustrated model. In this particular 
case, the missing information is seen to be some rather sophisticated property, namely 
the reduction of a four-parameter model to a two-parameter model. 

A similar property can be found in the literature, where some two-point correlation 
function on the honeycomb lattice depends only on two parameters and not on the 
three coupling constants of the model (Baxter and Enting 1978). 

a( t :  +t: )  +bt:t: +c(t : t? +t: t : )+dt : t f :  + e ( t f t :  +t:t$)+frf t$  
2 2 3  (1 - t l t 3 )  

5. Conclusion 

We have shown how a fully frustrated Ising model depending on four parameters can 
be mapped onto a ferromagnetic king model, which depends only on two. In some 
sense, one can say that fluctuations in two dimensions are important enough to 
‘defrustrate’ the model, with the caveat that T, of the Onsager case corresponds to 
T = 0 in the frustrated model. We would like to call attention to the non-trivial 
reduction of the number of parameters in this mapping. Such a reduction is seen to 
be very useful when one tries to determine the partition function of the fully frustrated 
model via the inverse relation. 

+ We have already encountered similar problems with the two-dimensional Potts and three-dimensional 
Ising models, where we tried to characterise the missing information (Jaekel and Maillard 1982a, b). 
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Appendix. Relation to a (constrained) Baxter model 

Let us perform a partial trace over spins (figure 2 ( a ) ) :  

Equation ( A l )  can be rewritten as 

This is turn yields 

cosh(K1+ KZ + K3 + K4) = A exp(K12 +K23 + K34 +K41) exp(K13 +K24) exp(K12~4) 

cosh(K1- KZ + K3- K4) = A exp(-K12-Kz3 - K34 - K4dexp(K13 + Kz4)e~p(K1~34) .  
(A3) 

Equation (4a) is then easily obtained. Equations (46)-(4d) can be similarly derived. 
The partial trace over spin 7 (figure 2(6)) replaces (K2, K4) by (-Kz, -K4) in 

equation (Al) .  This amounts to changing (p2, p4) to (-pz, -p4) in (A2), which in 
turn can be considered as changing the sign of (Klz, K23, K34, K41). Combining partial 
traces on U and 7 (figure l),  we obtain the cancellation of these terms. 
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